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Abstract

In this study, we present extensive attention-based networks
with data augmentation methods to participate in the IN-
TERSPEECH 2019 ComPareE Challenge, specifically the
three Sub-challenges: Styrian Dialect Recognition, Continu-
ous Sleepiness Regression, and Baby Sound Classification. For
Styrian Dialect Sub-challenge, these dialects are classified into
Northern Styrian (NorthernS), Urban Sytrian (UrbanS), and
Eastern Styrian (EasternS). Our proposed model achieves an
UAR 49.5% on the test set, which is 2.5% higher than the base-
line. For Continuous Sleepiness Sub-challenge, it is defined as
a regression task with score range from 1 (extremely alert) to 9
(very sleepy). In this work, our proposed architecture achieves
a Spearman correlation 0.369 on the test set, which surpasses
the baseline model by 0.026. For Baby Sound Sub-challenge,
the infant sounds are classified into canonical babbling, non-
canonical babbling, crying, laughing and junk/other, and our
proposed augmentation framework achieves an UAR of 62.39%
on the test set, which outperforms the baseline by about 3.7%.
Overall, our analyses demonstrate that by fusing attention net-
work models with conventional support vector machine benefits
the test set robustness, and the recognition rates of these par-
alinguistic attributes generally improve when performing data
augmentation.

Index Terms: attention networks, augmentation, adversarial
learning, computational paralinguistics

1. Introduction

In recent years, development of speech acoustic algorithms has
helped advance many human-machine interface designs across
applications such as companion robot [1, 2], meeting assistant
[3, 4], and medical agent [5]. Furthermore, the ability to compu-
tationally extract paralinguistic information conveyed in these
recorded acoustic signals is important in designing novel engi-
neering solutions that were not possible before. In fact, Com-
ParE Challenges have been committed to provide a platform
for a wealth paralinguistic attributes recognition benchmarks,
e.g., emotion, gender, age, autism spectrum disorder, etc., us-
ing real-world dataset in the past decade. In this year, ComParE
Challenge 2019 is composed of four sub-challenges: Styrian
Dialect Sub-Challenge, Continuous Sleepiness Sub-challenge,
Baby Sound sub-challenge, and Orca Activity Sub-challenge
[6]. In this work, we propose three specific algorithmic ap-
proaches to participate in Styrian Dialect, Continuous Sleepi-
ness, and Baby Sound Sub-challenges.

Firstly, for Styrian Dialect recognition Sub-challenge, it is
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well-known that in the same language, the accents and the pro-
nunciations could be different across regions resulting in Di-
alectal variation. This dialect variation causes an issue in speech
recognition and speech or linguistic-based therapeutic assess-
ment [7, 8, 9]. The ability to automatically recognize different
dialects is an important technological module in speech-based
solutions. Secondly, for Continuous Sleepiness Sub-challenge,
insomnia has become a major issue in the modern society, and
its severity could even be a prognostic factor for some illnesses
[10]. Recognizing the sleepiness level from speech acoustic
could help decide the proper therapy and adjust one’s life style
as early as possible. Lastly, for Baby Sound Sub-challenge,
without language ability, making sound the only way that in-
fants could express their feelings. The subtle variation in the
acoustics of the baby sound could indicate their emotional and
physiological conditions [11, 12]. Developing algorithms that
could reliably classify the types of baby sound categorizations
can help improve the quality of infant care.

These computational paralingistic tasks often suffer from
varying recording conditions, e.g., background noise, record-
ing devices, environment factors, and mismatch and unbalanced
class distributions between training and testing. These challeng-
ing conditions resemble closely to the real-world application
scenarios. In this work, we apply a variety of attention-based
networks augmented with generated or real samples for each
of the three Sub-challenges. For Styrian Dialect Sub-challenge,
we perform decision score fusion between three models: the
baseline model, a support vector machine (SVM) trained with
volume augmented dataset, and attention-based convolutional
neural network (CNN) with volume augmentation as well. Our
proposed model achieves 51.7% and 49.5% in development
and test set, which improves 7.3% and 2.5% over the base-
line model. For Continuous Sleepiness Sub-challenge, we per-
form decision score fusion between four models: the base-
line model, a support vector regressor trained on the extreme
subset, attention-based bi-directional long short-term memory
(BLSTM), and attention-based CNN. Our proposed framework
achieves a Spearman correlation of 0.373 and 0.369, which is
an absolute improvement of 0.099 and 0.026 over the baseline
model. For Baby Sound Sub-challenge, we use an adversarial
auto-encoder network (AAE) to generate samples and addition-
ally include real samples of infant crying to perform training
data augmentation. We extract all three types (ComPareE, au-
Deep, and IS10-paraling) of feature sets to train a SVM model.
This approach achieves 61.37% and 62.27% UAR in develop-
ment and test set, that is a 6.37% and 3.57% absolute improve-
ment over the baseline model.

http://dx.doi.org/10.21437/Interspeech.2019-2110



2. Research Methodology

2.1. Frameworks

2.1.1. Attention-based CNN

CNN-based models have been applied successfully to tasks of
speech recognition [13], speech emotion recognition [14, 15],
and dialect recognition [16]. In this work, we use eGemaps-
LLD as input features with dimension of (L, D, 1) for our CNN
model, where L is the sequence length, D is the feature di-
mension. Each feature can then be treated as a single image
with one channel. These input features are passed through 3
convolutional layers to generate feature maps with dimension
of (L', D’,C"). Feature maps are reshaped into a 2D matrix
with dimension (C’, L’ x D’) then pass to a fully-connected
layer. The output of the fully-connected layer M with dimen-
sion (C’,d) is then treated as the input of the attention layer,
where d is the hidden dimension. Then, we perform mean-
pooling to the learned attention-weighted feature maps to ob-
tain the hidden representations z, where z € R?. z are finally
passed to subsequent two dense layers for recognition. In the
Styrian Dialect Sub-challenge, the output dimension is three,
corresponding to probabilities of the three classes after softmax.

Ysp = softmaz (relu (zWh + b1) Wa + b2) €))

For the Continuous Sleepiness Sub-challenge, output di-
mension is reduced to 1, representing the level of sleepiness.

Yeos = relu (zWs + b)) Wy + by, 2)
where Wi, Wa, W3, Wy represent weight matrices; b1, ba,
bs, by represent bias vectors.

2.1.2. Attention-based BLSTM

Bidirectional Long Short-Term Memory (BLSTM) has also
been widely used in speech recognition tasks [17, 18]. Com-
pared with standard LSTM, it incorporats both forward and
backward information of a time series into hidden states. The
input of BLSTM is frame-wise acoustic features. At each time
step t, BLSTM encode the i*" feature f;; into forward and back-
ward direction as follows:

hay = LSTM (fir),t € [1, L], 3)
hor = LSTM (f:),t € [L, 1], @)

L is the timestep of the frame-wise feature. We can then obtain

final hidden state h;; by concatenating h.zz and E An attention
layer is further used to reweight and encode h;; into context
vector c. cis forwarded to a fully-connected layer and generate
prediction for the Continuous Sleepiness Sub-challenge.

Yes = relu (¢cWs + bs) We + be, )

where W5, W, are weight matrices; bs, be are bias vectors.

2.1.3. Attention Layer

Attention is shown to be an effective technique to summarize
complex information from time series. Here we use the Bah-
danau attention [19] as our attention mechanism for both CNN
and BLSTM mentioned above; an attentive representation is
computed as a learnable weighted sum over all frames. The
score function e(-) and attention weight o are defined as:

e (uir) = vl tanh (Wauir + ba) (6)

exp(e (uir))

= —n—r 7
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where v, € R? and W, € R are weight matrices,
ba € R¥! is a bias vector, d is the hidden dimension. For
BLSTM+ATT, u;+ corresponds to the outputs of BLSTM h;:
with T" equals to L. For CNN+ATT, wu;; corresponds to the re-
sized feature map m from a fully-connected layer after convo-
lutional layers with T equals to C”. The attentive representation
h, is obtained by performing weighted sum over w;;.

T
h,c: E Ot Uit .
t=1

2.1.4. Adversarial Autoencoder

®)

Adversarial auto-encoder (AAE) [20] is a Generative Adver-
sarial Networks (GAN) [21] based autoencoder approach. The
AAE model includes three networks: encoder (generator), de-
coder and discriminator. The encoder and decoder are trained
as a standard autoencoder that reconstructs features from the
learned latent space. On the other hand, discriminator is trained
to predict whether a sample comes from the hidden code of the
autoencdoer or from a sampled distribution. In this work, we
fit the sample distribution to a mixture of 10 2-D Gaussian, and
each mixture represents the associated class of the Baby Sound
categorization. As the training process converges, the AAE de-
coder can then be utilized to regenerate synthetic samples ac-
cording to a class-specific code vector [20, 22]

2.2. Dataset Preprocessing

2.2.1. Styrian Dialect (SD)

Volume Augmentation: The label distribution on SD dataset is
imbalanced: 4,052 for UrbanS, 1,949 for EasternS, and 1,796
for NorthernS. This imbalanced data distribution generally cre-
ates a robustness issue. In this work, we conduct data augmen-
tation to address this problem. Data augmentation is commonly
used to increase the amount of data that help avoid over-fitting.
Many approaches have been explored to augment the audio
data, such as adding Gaussian noise, pitch shifting, time stretch,
speed change, and volume change [23]. Specifically, previous
research indicates that speed change and volume change can
help improve dialect recognition performances [16]. In the SD
dataset, we have experimented with these two methods. How-
ever, changing speed does not improve the performance in our
experiment, thus volume augmentation is used. We increase the
data samples by tuning the volume of training set with the ratio
of 0.5, 1, and 2, and we extract the features on this augmented
set for model training.

2.2.2. Continuous Sleepiness (CS)

Select Significant Labels: Given that the property of CS
dataset labels are ordinal instead of categorical classes, those
data samples with moderate scores, such as 4,5,6, are highly
indifferentiable and take up the majority of the dataset. In con-
trast, data with extreme scores, such as 1,2,3,7,8,9, are more
discriminative, we assume that data with extreme scores would
be more effective in learning our algorithm. We filter out those
training data with moderate scores and select significant labeled
data samples, named Select Significant Labels (SSL), in the CS
training set for this work.

2.2.3. Baby Sound (BS)

Synthetic and Conditional Synthetic Data Augmentation

Although upsampling can reduce impact to the imbalanced
class distribution issue, it does not increase the diversity, hence
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Figure 1: Styrian Dialect: SVM and CNN+ATT are trained on augmented data are combined together in fusion stage. Continuous
Sleepiness: we use SSL on training data. Predictions of SVR, CNN+ATT and BLSTM are combined in the fusion stage. Baby Sound:
we utilize original train data to pretrain AAE model. Encoded laughing data vector, selected Gaussian samples and pretrain decoder
are used to generate augmented samples (Synthetic feature and Conditional Synthetic feature).

the information content, of the minority class. In order to over-
come this issue, Adversarial auto-encoder (AAE) is used to
regenerate synthetic samples. We sample the target code vec-
tors from a latent mixture of Gaussian distribution of each baby
sound class component. We then pass the sampled code vector
through the learned decoder of the AAE to generate synthetic
data. Moreover, in order to further increase the diversity of
laughter data in the BS dataset, we add 30 samples of 1-second
baby laughter audio data [24] as an additional data source. In-
stead of augmenting these raw training data directly, we input
them into our learned AAE model to generate the reconstructed
features (Conditional-Synthetic feature) that would be more re-
sistant to the domain shift effect [25].

2.3. Fusion Techniques

Fusing multiple models in final prediction can not only achieve
better predictive performance, but also reduce the variance and
bias compared with using individual model. Despite different
model architectures, we combine each model’s predictive out-
put at the decision stage using probability for classification [26]
or predicted values after regression. In this work, we adopt two
fusion strategies on SD and CS Sub-challenges. Additionally,
instead of fusing the models’ outputs at the decision-level, we
conduct early fusion of feature sets on BS Sub-challenge. In SD
Sub-challenge we apply decision score fusion. The probability
distributions of individual model on each category are collected
as an ensemble. The probability distribution of the ensemble is
the average of the individual models’ probability distribution.
In CS Sub-challenge, we fuse the models’ sleepiness regressed
levels by taking the mean. Lastly, in BS Sub-challenge, dif-
ferent feature sets are needed to obtain an improvement in the
recognition rates. In order to streamline our data augmentation
process, we conduct early fusion by concatenating different fea-
ture sets to build a robust feature set.

3. Experimental Setup and Results
3.1. Experimental Setup

3.1.1. Feature Sets

Statistical Features: In this work, we extract several acoustic
statistical features using the openSMILE toolkit [27], including
ComParE16 functional, extended version of Geneva Minimalis-
tic Acoustic Parameter Set (eGemaps) [28] functional and IS10
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challenge [29]. Besides, baseline features, i.e., auDeep [30] and
BoAW [31], are also utilized for our baseline SVM training.

Temporal Features: For time series models, we extract
the low-level descriptors of eGemaps[28] (eGemaps-LLD),
which is used for training spatial-temporal models such as
BLSTM [18] and CNN [15]. LLD sequence is padded to
the max sequence length. For CNN-based model training,
we resize all eGemaps-LLD into a 3D array in the shape of
(maz time steps x dim x 1), where dim is the dimension
of the feature. Consequently, each LLD is treated as an image
with a single channel.

3.1.2. Model Parameters

CNN+ATT: CNN+ATT combines convolutional layers with an
attention layer and a dense layer in between convolution and
attention, finally a fully-connected layer that learns to perform
recognition on the attentive representation. The convolutional
layers consist of three convolutional layers of kernel size 5 x 5
with batch normalization and rectified linear unit (relu) as ac-
tivation. In SD Sub-challenge, CNN+ATT is optimized using
Adam optimizer with cross-entropy loss as our objective. In
CS Sub-challenge, CNN+ATT is optimized using mean square
error as our objective.

BLSTM+ATT: Our BLSTM+ATT network consists of
BLSTM with 32 hidden units per direction. It includes one
attention layer and two fully-connected layers. In CS Sub-
challenge, BLSTM+ATT is optimized using mean square error.

AAE: Our AAE network is composed of an encoder, a de-
coder and a discriminator. The encoder is composed of 3 fully-
connected layers, decoder with 6 fully-connected layers, and
discriminator with 3 fully-connected layers. Notice that we use
relu as the activation function, and the dropout regularization
probability is set with a keep-probability 0.5 for all layers ex-
cept 0.75 for the last layer of the discriminator. A reparame-
terization step is added to the encoder. The AAE network is
optimized using Adam optimizer, where the reconstruction de-
coder uses mean squared error and the adversarial network uses
binary cross entropy as objective.

3.2. Models & Analysis

The following provides a comparison between our proposed
methods and baseline models in each of the three sub-



Table 1: A comparison of different models on SD Sub-challenge.
SVM, o1 and CNN+ATT,; represents SVM and CNN+ATT mod-
els trained with voice augmentation data.

Styrian Dialect (%)
SVM.,s CNN+ATT,, Baseline Fusion
NorthernS 50.5 68.2 43.7 57.7
UrbanS 52.1 91.1 64.3 70.0
EasternS 47.0 0.20 25.0 27.3
UAR (Dev) 49.9 53.2 444 51.7
UAR (Test) - - 47.0 49.5

Table 2: A comparison between different models on CS Sub-
challenge. All of the methods are trained with SSL.

Continuous Sleepiness
SVR BLSTM+ATT CNN+ATT Baseline Fusion

p (Dev) 354 357 354 274 373
p(Test) - . - 343 369

challenges. The performance of official baselines on develop-
ment sets are presented based on the paper on the challenge [6].

3.2.1. Styrian Dialect (SD)

In SD sub-challenge, we utilize SVM and attention-based CNN
models. In addition, volume augmentation is applied for all
proposed models. Table 1 summarizes the performances of our
experiments. By applying volume augmentation, SVM,, shows
a significant improvement on recognizing EasternS, i.e., recall
rate of 47.0%, which is highest among all methods in the de-
velopment set. Moreover, CNN+ATT, that trained based on
eGemaps-LLD achieves the best overall UAR of 53.2% on the
development set as well as the recall rate on NorthernS (68.2%)
and UrbanS (91.1%). By fusing SVM,,, CNN+ATT,, and
baseline model together, the UAR on testing set reaches 49.5%,
which is 2.5% higher than the official baseline.

By examining the recall of each model, the SVM con-
tributes the most on EasternS, and CNN+ATT contributes a high
predictive power on NorthernS and UrbanS. Specifically, when
comparing our model to the official baseline, recall of EasternS
increases from 64.3% to 70.0% and recall of NothernS increases
from 43.7% to 57.7%. Fusion result including baseline model
shows a further improvement demonstrating that our proposed
models are complementary to each other.

3.2.2. Continuous Sleepiness (CS)

Table 2 shows the performance of all models in CS Sub-
challenge. All of the models are trained with SSL preprocessing
as detailed in section 2.2.2. With the use of SSL, the prediction
output can capture the extreme values more evenly; without the
use of SSL, the output tends to be regressed to an average level
which is 5. Both BLSTM+ATT and CNN+ATT frameworks
benefit from SSL-based training, which obtains a .357 and .354
Spearman CC on the development set respectively. Moreover,
using support vector regression (SVR) with SLL also achieves
an improved corrleation, i.e., .354 Speaman CC.

In this work, by taking the mean from the outputs of SVR,
BLSTM+ATT, CNN+ATT, and baseline, we obtain the highest
Spearman CC on both development and test sets. When com-
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Table 3: A comparison between models on the BS Sub-
challenge. SVM-EF: early fusion of three feature set, AAE: Syn-
thetic feature and C-AAE: Conditional Synthetic feature

Baby Sounds (%)

SVM-EF AAE C-AAE Baseline
Canonical 67.2 66.7 67.7 66.4
Crying 69.9 69.9 66.8 70.6
Junk 65.2 63.1 64.4 67.3
Laughing 56.1 58.5 65.8 41.5
Non-canonical 32.5 39.6 42.5 24.1
UAR (Dev) 58.2 59.6 61.3 54.0
UAR (Test) - 60.8 62.39 58.7

paring the fused model with the baseline model, the Spearman
CC of development set increases from .274 to .373. Also, Spear-
man CC of test set increases from .343 to .369. Through SSL
training, our models help in regressing continuous sleepiness
level, which is ordinal-ranking in nature and further mitigates
the issue that the training distribution is heavily concentrated
around the middle level.

3.2.3. Baby Sound (BS)

Table 3 summarizes our BS Sub-challenge results. The base-
line method achieves 54% UARs in the development set. In
specifics, Early Fusion (SVM-EF), Synthetic (AAE), and Con-
ditional Synthetic (C-AAE) data augmentation method im-
proves the UAR to 58.2%, 59.6% and 61.3% respectively. We
experimentally determine the number of augmented samples
to be added to the BS dataset. We observe that the appropri-
ate amount for data augmentation on the Canonical, Laughing,
Non-canonical class that help improve the performance is 300,
200, and 800, respectively.

Generally, in an imbalanced data distribution task, we tend
to augment minority classes data. But in this case, our exper-
iments show that a better performance can be achieved if we
simultaneously augment a varying number of samples on differ-
ent classes. This may potentially due to the overall increase in
the diversity of the database, which translates to a more robust
recognition results on the test set. Furthermore, AAE model
is limited in its capability to augment Laughing data due to
the lack of real samples in the BS dataset. The use of addi-
tional Laughing data gathered from other data source can help
increase the inherent information that AAE can model thus im-
prove the performance. Finally, the majority classes of imbal-
anced data usually dominate over minority classes when using
deep learning model as the classifier, in this work, we continue
to use linear support vector machine that is more robust in han-
dling this challenging classification task.

4. Conclusions

In this work, we present state-of-the-art attention-based recog-
nition models on the three Sub-challenges of INTERSPEECH
2019 ComParE challenge. We further experiment with several
data processing techniques, including volume augmentation, se-
lect significant labels and AAE-based data augmentation. Our
methods outperform official baselines on the test set in each
of the three Sub-challenges, specifically we obtain an UAR of
49.5%, a Spearman CC of .369 and an UAR of 62.39% on Styr-
ian Dialect, Continuous Sleepiness and Baby Sound recognition
task respectively.
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